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Abstract. Recent relations that relate the exponent s of superconducting percolating 
networks to other percolation exponents are discussed. We analyse the available exact 
and numerical results for s to gain insight into the possible relation between s and the 
geometrical exponents of percolation and the structure of superconducting percolation 
networks. The results are given geometrical interpretation. We also discuss the random 
walk statistics of the ‘termite’ which executes a random walk on the superconducting 
percolation networks. In particular we propose an expression for the mean number of 
distinct sites visited by the termite and interpret it in terms of the statistics of a random 
walk with a transition probability whose variance is infinite. 

1. Introduction 

Conductivity of random networks near the percolation threshold p c  has been much 
studied because transport processes and many other phenomena in disordered systems 
can be modelled by means of random networks of conductors. Near pc  the conductivity 
Z of the network exhibits power-law behaviour. For a network with a fraction p of 
conducting bonds and a concentration ( 1 - p )  of insulating bonds one has, Z - ( p  - pc)‘,  
whereas Z - ( p c  - p ) - *  for a network with a fraction p of superconductors (i.e. bonds 
with zero resistance) and a concentration ( 1  - p )  of ordinary conductors. The critical 
exponents t and s are believed to be universal. An outstanding problem is whether 
there exist simple relations which relate t and s to the static exponents of percolation. 
t, which is a dynamical exponent, can be expressed as 

t = ( d  -2 )v+  5 ( 1 )  

where d is dimensionality and v the exponent of percolation correlation length .&,. 
Here 5 is a universal exponent which describes the divergence of the resistance L of 
links in the ‘nodes and links’ model of the backbone (Skal and Shklovskii 1974, de 
Gennes 1976). In  this model the backbone, i.e. the current-carrying part of the infinite 
cluster, is assumed to be made of nodes which are connected by long chains of several 
bonds called links. In the ‘nodes and links and blobs’ model of the backbone (see 
Stanley and Coniglio 1983 for a review) 5 represents the divergence of the resistance 
of one-dimensional chains along the backbone of the largest percolation cluster at p c  
(Coniglio 1981). This means that in a transformation from the largest percolation 
cluster at p c  to its backbone 5 remains invariant. 

0305-4470/85/091543 + 08$02.25 @ 1985 The Institute of Physics 1543 



1544 M Sahimi 

In this paper we discuss the relation between s and the geometrical exponents of 
percolation. The exponent s plays an important role in the transport properties of 
disordered systems. It appears in the critical behaviour of the dielectric constant (Efros 
and Shklovskii 1976, Girannan et a1 1981, Wilkinson et a1 1983), the absorption 
coefficient of random metal-insulator composites (Bowman and Stroud 1984), in the 
conduction of binary metallic mixtures (Straley 1977, Fogelholm and Grimvall 1983) 
and in the viscosity of a gel (de Gennes 1979). By analysing the available exact results 
and the numerical estimates of s we will attempt to gain insight about the structure 
of superconducting percolation networks below p c  and the possible relationship 
between s and the geometrical exponents of percolation such as v. Since this problem 
can be formulated as a random walk problem (de Gennes 1980) our analysis may 
enable us to gain some understanding about the properties of this random walk. 

The plan of this paper is as follows. In 0 2 we analyse the available results for the 
exponent s by using a modification of equation (1). Our analysis indicates that s might 
follow certain laws at various dimensionalities. The conditions under which these laws 
might hold and the geometrical interpretation of them are also discussed. In 0 3 the 
analysis of 0 2 is employed to discuss the properties of the random walk model of 
superconducting percolation networks. Section 4 relates the present problem to the 
concept of ‘antifractal’ recently discussed by Pandey (1984). The paper is summarised 
in 5 5. 

2. The analysis of the data 

An equation similar to (1) can be derived for s. Just below p c  a percolating network 
is made of large superconducting clusters whose linear dimensions are comparable to 
i$. These clusters offer zero resistance to an applied field E and therefore they play 
the role of nodes in the ‘nodes and links’ model of backbone above pc .  The resistance 
of the network is simply the sum of resistances of the connecting channels between 
these clusters. In the presence of E, the potential difference between two adjacent 
superconducting clusters is of order Et , ,  although at low enough dimensions, because 
percolation clusters partially overlap (see below), this might not be precisely correct. 
To calculate the conductivity of the network one needs to know the volume fraction 
x that the connecting channels represent (Straley 1980, Coniglio and Stanley (cs) 
1984). If the thickness of these connecting channels is finite, then x should be 
proportional to the ratio of surface to volume of superconducting clusters. However, 
one has to consider that part of the surface of a superconducting cluster which is not 
screened and is ‘reachable’ (Coniglio and Stanley 1984); the rest of the surface sites 
do not contribute to 2. The precise scaling behaviour of x near p c  is therefore not 
known (although Coniglio and Stanley (1984) have made some attempt to study it)  
and hence we assume that x - ( p C - p ) [ ’ .  Since the conductivity of the network is 
proportional to x( E[,)* (i.e. the dissipated power), we obtain 

s = 2 v - 5 ’  ( 2 )  

where 5 ’ Z  5, for at least some range of d. Stephen (1978) also derived an equation 
similar to ( 2 ) .  However, he chose 5‘ = P, where p is the critical exponent of the strength 
of the infinite cluster. But his choice was shown by KertCsz (1983) to misrepresent 
the physics of the problem. Moreover, Stephen’s (1978) equation fails badly at all 
dimensions below six. 
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Let us investigate the behaviour of 5’ by using the most recent and accurate estimates 
of s. At d = 1 one has the exact result s = 1, which means that 5’= 1 as it should be. 
In two dimensions one must have s = t ,  as a result of duality (Dykhne 1970, Mendelson 
1975, Straley 1977). The most recent estimates of s and t at d = 2  are as follows. 
Zabolitzky (1984), Hong et a1 (1984) and Lobb and Frank (1984) all estimated t to 
be about 1.3. Adler (1985) reanalysed the series expansion data of Fisch and Harris 
(1978) for t to take into account the effect of non-analytic confluent corrections and 
obtained t = 1.34. Calef et a1 (1984) developed two-point Pad6 summation techniques 
to investigate the behaviour of the configurationally averaged Green function for a 
random walk on a site-disordered percolating network and obtained t = 1.38, whereas 
Herrmann et a1 (1984) estimated that s = 1.3. A Flory approximation (Family and 
Coniglio 1985) yields t = v at d = 2. Thus one obtains 5’(d  = 2) = 1.29- 1.37 (where 
v ( d  = 2) = 4) with an average of about 1.33. In three dimensions Herrmann et a1 (1984) 
estimated that s = 0.75, while earlier Bernasconi (1978) gave s = 0.77. Bowman and 
Stroud (1984) measured s experimentally and obtained s = 0.73. Most of the other 
numerical estimates of s( d = 3) reported in the literature lie inside this interval if their 
reported error estimates are taken into account. This means that 5’(d  = 3) = 0.99 - 1.03, 
with an average of about 1.01, if v ( d  =3)=0.88. For six- and higher-dimensional 
systems one has the exact result, s ( d  3 6) = 0, so that 5’ (d  5 6) = 1, as expected. We 
are not aware of any accurate estimate of s at any other dimensions. Thus at low 
dimensions the numerical values of 5’ are very close to those of v, whereas in 
higher-dimensional systems 5’ appears to change very little and its value is about unity. 
(We remind the reader that 5’ should be monotonic above some certain dimensionality. 
Since 5’ is non-monotonic between d = 1 and some 2 <  dl < 3, we expect it to be 
monotonic above dl.)  We may then observe that 

s = v  d s dl, (3) 

s = 2 v - 1  d 2 dk (4) 

Here dl is the dimensionality which separates the two regimes, i.e. the dimensionality 
at which v = 2 v  - 1. This yields v ( d  = d , )  = 1, i.e. dl = 2.65. The existence of a critical 
dimensionality which separates two different regimes in each of which t and s may 
be related to other percolation exponents by different relations, has recently been 
argued by several authors (Aharony and Stauffer 1984, Coniglio and Stanley 1984, 
Sahimi 1984). Aharony and Stauffer (1984) and Sahimi (1984) argued that for the 
exponent t the dimensionality d is such that the fractal dimensionality d f  of the largest 
percolation cluster at pc is exactly equal to 2 .  However, there is no reason to believe 
that dl (if it indeed exists) should be the same for both exponents. Coniglio and 
Stanley (1984) also argued that for s the dimensionality d,  is such that d f =  2 .  However, 
as we discuss below, their proposed relations for s are not likely to be exact and thus 
for s the dimensionality df may be different from what they suggested. Note that with 
(3) and (4), d k d  = d , )  = 2.3. Note also that equations (3) and (4) do not imply any 
discontinuity for s or 5’. They simply mean that 5‘ reaches its high-dimensional value 
just above dl. 

We do not make any claim about the exactness of (3 )  and (4). In the absence of 
E ( E  = 6-  d )  expansion for s and with the present numerical estimates, it is impossible 
to check the validity of (3) and (4). However, because these equations are inaccurate 
they have several interesting consequences which we discuss now. If equation (3) 
holds exactly (i.e., if s = v), it would then agree with E (here E = d - 1) expansion of 
s given by Kirkpatrick (1977). It would also mean that the relation s = v - i p  which 
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was proposed by Kertksz (1983) (Coniglio and Stanley (1984) argued that it should 
hold for dr> 2) cannot be exact, since at d = dl one must have v = v -$P, which is not 
possible. Straley (1980) has conjectured that 5 = 5‘ at all dimensions which means 
that t +  s = dv. In three dimensions where t -- 2 and s 20.75, Straley’s relation may 
not be satisfied. Moreover, the physical significance of 5 and 5‘ seem to be different. 
However, if the relation proposed by Aharony and  Stauffer (1984) and Sahimi (1984) 
for t for d , c 2 ,  t = ( d  - 1)v, is exact, then Straley’s relation is satisfied for d f e  2 but 
not for df> 2 .  At very high dimensions Straley’s relation is more accurate. For example, 
at d = 5 and  with t = 2.7 (Adler 1985) it yields s = 0.15, whereas (4) gives s = 0.14, if 
we use v( d = 5) = 0.57. Ohtsuki and Keyes (1984) have discussed the significance of 
a fractal dimensionality dCA which describes the effective area of the contact region 
between large superconducting clusters slightly below p c  (i.e., a fractal dimension 
which describes the connecting channels). They have shown that dc, = d -2-1- s/ v 
and have proposed that d f 2  dCA a df-  1, and  dCA S d - 1. Equations (3) and (4) suggest 
that dcA = d - 1 for d e dl and the inequalities hold strictly for d 2 dl. 

One should note that if (3) and the equation, t = ( d  - 1 ) v  were to hold exactly at 
low dimensionalities, one would obtain dCA = d - 1 for this range. This is the maximum 
value that dCA can attain, i.e. its value in a Euclidean space. This is because dCA for 
the present problem is equivalent to d,, the fractal dimension that was introduced by 
cs to describe the unscreened surface sites Mu of fractal structures. Mu increases with 
the molecular diameter 6 as Mu - t d ~ ,  and thus for Euclidean objects such as hyper- 
spheres, d, = d - 1. The computer simulation results of Herrmann (1979) for two- 
dimensional percolation clusters below p c  show that the density profile, i.e. the probabil- 
ity that a given site belongs to a finite percolation cluster if it is at a distance r from 
the centre of mass of the cluster, is almost Gaussian. This means that these clusters 
have a very dense structure. If this density profile were exactly Gaussian, one would 
have dCA = d - 1 (i.e., s = v), consistent with our observation. Moreover, at low 
dimensions the finite percolation clusters below p c  overlap stronger and stronger as p c  
is approached, which means that two large superconducting clusters occupy partially 
the same volume if their centres of mass are close together. The effect of this inter- 
penetration is to increase the contact area between two superconducting clusters and, 
therefore, we may expect that 5’2 v. For d 3 dl where [’= 1, this inequality holds 
strictly. These observations d o  indicate that at low enough dimensions d,, attains at 
least a value very close to its value in Euclidean space, i.e. do= d - 1, which is 
indicative of the rather dense structure of superconducting clusters. 

3. The relationship with the ‘termite’ problem 

We may reinterpret the data in terms of the random walk of the ‘termite’ (de  Gennes 
1980, Coniglio and  Stanley 1984). To describe the physics of superconducting networks, 
de  Gennes (1980) suggested that we consider a random walker, called a ‘termite’, 
which performs a normal random walk, i.e. a random walk in which the duration of 
each step is finite, when of the superconducting cluster but which moves instan- 
taneously when on the superconducting cluster. This is of course because there is zero 
potential gradient (zero resistance) along a superconducting bond. De Gennes’ model 
is sometimes called ‘the stopwatch termite’. Since the only effect of superconducting 
cluster is to stop the clock, the trace of this termite is the same as that of a simple 
random walk. Bunde et al (1985) found, by numerical simulations and analytic 
arguments, that the diffusion coefficient D of this termite is given by D = ( 1  - p ) - ’ .  
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Thus a severe drawback of this model is that there is no singular behaviour at pc  
(except at one dimension). 

More recently, more realistic random walk modeis of diffusion in superconducting 
percolation networks have been proposed. In particular, Bunde et a1 (1985) and Adler 
et a1 (AAS) (1985) have studied a random walk model whose diffusion coefficient has, 
in contrast with de Gennes' original 'stopwatch' termite, singular behaviour at p c .  
Moreover, if R is the root-mean-squared displacement of the termite, one has 
anomalous diffusion for R << tP. Thus one may introduce a fractal dimension d k  for 
the termite, at time 8, through R - similar to d ,  of the ant which describes the 
conductivity of percolation networks of conductors and insulators. To obtain an 
expression for d k  one has to realise that the termite's motion can start on any site of 
the network. It can also move to any site of the network. Thus the termite 'feels' the 
presence of superconducting clusters of all sizes. Hence d k  must be an average quantity, 
the average being taken over the distribution of cluster sizes. For the ant problem this 
was investigated by Gefen et a1 (1983), who showed that if R is averaged ouer all 
clusters one obtains 

d , = 2 ( 2 ~ +  t - P ) / ( 2 v - P ) .  ( 5 )  

For the termite problem the situation is somewhat controversial at present. In the 
model of cs (see also Bunde et a1 1985) two types of jump frequencies, 7,' = 1 for 
the ordinary conductors and 7;' >> 7,' for the superconducting ones, are associated 
with the motion of the termite. At any given site the termite can choose any one of z 
nearest-neighbour bonds ( z  is the coordination number) for its next step. The transition 
probability for choosing bond i is given by 7 ; ' / ( Z 1  T ; ' ) ,  where T ; ' =  7,' or 7;') 
depending on whether i is an ordinary or superconducting bond. The limit T; '+OO 

describes the termite of cs. The fractal dimension dk is predicted to be 

(6) 

On the other hand, AAS proposed a different type of termite which can exit from a 
superconducting cluster from any site with equal probability. A similar model has 
also been discussed by Bunde et a1 (1985). To obtain d k  for this model (the so-called 
'Tel-Aviv' termite which is similar to 'Boston termite 2', see Bunde et a1 1985) one 
may observe that the exponent (-SI plays the same role for superconducting percolation 
networks as does the exponent t for the percolation networks of conducting and 
insulating bonds above pc .  Thus one might simply replace t in ( 5 )  with (-s). Indeed, 
it is straightforward to repeat the analysis of Gefen et a1 (1983) for the termite problem. 
One finds that the only difference is the replacement of t with (-s), which is of course 
because the diffusion coefficient D for the termite problem scales with (-s) and not 
t. The final expression for d k  is almost identical to d,: 

d k = ( 2  v - s ) / V .  

d k = 2 ( 2 ~ -  s - P ) / ( ~ v - P ) .  (7) 

Comparing (6) with (7)  one may say that the absence of /3 in the cs formula means 
that the effect of different cluster sizes has not been taken into account. An elegant 
and somewhat different derivation of (7)  has been given by Stauffer (1985) (whose 
work inspired the present argument) who starts from a general scaling equation which, 
in the appropriate limits, reduces to the ant or termite problems. 

Unlike d ,  equation ( 7 )  predicts d k  to be a non-monotonic function of d.  An 
examination of ( 7 )  using (4) shows that near d = 6 one has d k =  1. We propose that 
d k =  1 for d 2 6. We note that if the conjecture of Kertksz (1983) (see also Sahimi 
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1983), s = ; ( 2 v - p ) ,  were exact, equation (7) would predict d L =  1 at all dimensions, 
which we think is not plausible. 

One can obtain expressions for Po( e), the probability of return to the origin at time 
8, and S (  e) ,  the mean number of distinct sites visited by the termite. Again we have 
to take into account the fact that the termite can start its motion on any site and thus 
Po(B) and S ( 0 )  represent average quantities, the average being taken over the distribu- 
tion of cluster sizes. For the ant problem these average quantities have been investigated 
by Angles d’Auriac and Rammal (1983) who obtained the following results for the ant 

P o ( e )  - e-d,idu, (8) 

s(e) - (9) 

where d, = 2 + ( t  - p ) /  v is the fractal dimension of random walks on the largest cluster 
at p c  and cy = d - 2p/ v. For the termite problem we may repeat their analysis to obtain 
the corresponding expressions for Po( 0)  and S (  e). For example for the case of p = p c  
we may write 

where p ( n )  is the probability that the motion of the termite starts on a cluster of n 
sites and S,(n, 0 )  is the number of sites visited on such a cluster. p ( n )  is related to 
the distribution of clusters of n sites (Stauffer 1979) at p = p c ,  n, - n - ( d / d f + ’ )  Y Y  b 
p (  n) = nn,. Here df = d - p /  v is the fractal dimension of the largest percolation cluster 
at p c .  For a given 6 we find 

s(e) - e - - a / d k .  (11) 

Po(e )  - (12) 

Similarly, for Po(B) we find 

These are completely analogous to (8) and (9). Equation (12) has also been derived 
by AAS using a simpler argument which can be summarised as follows. The volume 
filled by sites visited after time 0 is of order R d  - Od’dh.  Since all sites are equally 
probable the probability of return to the origin is predicted to be l /Rd,  which results 
in (12). Thus the only difference between the ant and the termite, so far as the scaling 
laws for ,various quantities are concerned, appears to be the replacement of t with 
( - 3 ) .  Interestingly, the quantity cy in (9) and ( 1 1 )  is what was originally thought to 
be the fractal dimension of the largest percolation cluster at p c  (Stanley 1977). 

In one dimension ( 1  1 )  predicts that S ( 0 ) -  8 ;  for an ordinary random walk on a 
linear chain one has S ( 0 ) -  (Dvoretzky and Erdos 1951). To interpret the termite 
result we note that Gillis and Weiss (1970) considered a random walk in which jump 
probabilities p ( r )  for a vector displacement r were given by p ( r ) -  r - ’ 1 + 6 ’ ,  where 
1 < 6 2, so that the variance of p ( r )  is infinite, i.e. the walker can take very long 
jumps. It was found that in one dimension 

s(e) - 4 1 < 6 S 2 .  (13) 
In the termite problem of AAS, the random walker is placed at random on any site of 
the network, and then choose to walk to one of this site’s nearest neighbours. If the 
new site is occupied by an ordinary conductor then one unit of time is recorded. If 
the new site is superconducting, a selection is made at random from amongst all the 
sites on the superconducting cluster to which this site belongs and the termite jumps 
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to this site (no unit of time is recorded this time). As p c  is approached from below, 
larger and larger superconducting clusters appear and it becomes more and more likely 
that the termite takes very long jumps (and in one dimension at p c  it can travel the 
entire system in a single jump). Thus in this sense the termite problem of AAS and the 
random walker of Gillis and Weiss are similar. Another contributing factor to such a 
behaviour for S (  8) is that while the termite is visiting ntx; sites on the superconducting 
cluster, the clock is stopped; thus we should expect S ( 8 )  to grow with the measured 
time faster than e l i 2 .  We also believe that the growth of S ( 8 )  with 8 for the termite 
of AAS is faster than the corresponding case for the ant problem, even if (11) turns 
out not to be exact. For the same reason, one must have d k  < 2 .  Note that for d 5 6, 
we should have S( 0 )  - e*. 

4. The relation with ‘antifractals’ 

Random walks on most fractal systems such as percolation clusters have a fractal 
dimension d, > 2 .  However, for some fractals and more generally, some disordered 
systems, it might be possible that d, < 2 and hence one has a superdiffusive regime. 
Such systems were called ‘antifractals’ by Pandey (1984). An example is the motion 
of a particle in a static random potential for which d, = 1 (Heinrichs and Kumar 
1984a). Marianer and Deutsch (1984) have claimed that the result of Heinrichs and 
Kumar (1984a) is wrong and that Pandey’s antifractal concept has no mathematical 
foundation (see also the reply of Heinrichs and Kumar 1984b). 

The random walk of the termite on superconducting percolation networks below 
p c  is an example of a random walk on an antifractal. Here one has a well defined 
fractal structure and a random walk with d k  < 2 for all d < 6. Thus the objection of 
Marianer and Deutsch (1984) to the notion of antifractal appears to us not to be well 
founded, at least in the case of superconducting percolation networks below p c .  

5. Summary 

We have analysed the available exact and numerical results for the exponent s of 
superconducting percolation networks to gain insight about the possible relation 
between s and the geometrical exponents of percolation and the structure of supercon- 
ducting percolation networks below pc .  We proposed an expression for the mean 
number of distinct sites visited and mean number of visits to the origin by the ‘termite’ 
which executes a random walk on superconducting percolation networks. We inter- 
preted the result in terms of a random walk whose variance of its transition probability 
is infinite. We also pointed out that superconducting percolation clusters are well 
defined examples of ‘antifractals’ recently discussed by Pandey (1984). 
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Note added in prooj A Bunde and D Stauffer (1985 Preprint) have argued that termites behave like ants for 
not too long times. They have also argued that the random walks of termites cannot be described in the 
general case by a two-argument scaling function. This claim is supported to some extent by the Monte 
Carlo results of Sahimi and Saddiqui (1985). but the matter is not yet settled. 
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